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A Note on Bayesian Inference After Multiple Imputation

Xiang ZHOU and Jerome P. REITER

This article is aimed at practitioners who plan to use
Bayesian inference on multiply-imputed datasets in settings
where posterior distributions of the parameters of interest are
not approximately Gaussian. We seek to steer practitioners
away from a naive approach to Bayesian inference, namely es-
timating the posterior distribution in each completed dataset
and averaging functionals of these distributions. We demon-
strate that this approach results in unreliable inferences. A bet-
ter approach is to mix draws from the posterior distributions
from each completed dataset, and use the mixed draws to sum-
marize the posterior distribution. Using simulations, we show
that for this second approach to work well, the number of im-
puted datasets should be large. In particular, five to ten imputed
datasets—which is the standard recommendation for multi-
ple imputation—is generally not enough to result in reliable
Bayesian inferences.
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1. INTRODUCTION

When some data values are missing, one approach to statis-
tical inference is multiple imputation (Rubin 1987; Reiter and
Raghunathan 2007). The basic idea is for the analyst to fill in
any missing values by repeatedly sampling from the predictive
distributions of the missing values. When the posterior distri-
bution of the parameter of interest, or, for likelihood-oriented
statisticians, the sampling distribution of the complete-data es-
timator, is approximately Gaussian, the analyst can obtain in-
ferences by computing point and variance estimates of interest
with each dataset and combining these estimates using simple
formulas. These formulas serve to propagate the uncertainty in-
troduced by imputation through the analyst’s inferences.

When presuming normality of the posterior/sampling distri-
bution is not justifiable, the distribution is not adequately sum-
marized by the mean and variance, so that Rubin’s (1987) rules
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are not appropriate for inference. Nonetheless, some practi-
tioners continue to use Rubin’s (1987) rules even when they
are theoretically invalid. For example, in a literature review of
applications of multiple imputation involving parameters not
adequately modeled with normal distributions, Marshall et al.
(2009) found that, “Rubin’s rules without applying any trans-
formations were the standard approach used, when any method
was stated.” They went on to cite several examples where Ru-
bin’s (1987) rules are used to estimate functionals of distribu-
tions, such as percentiles of survival distributions.

When normality is not justifiable, Bayesian approaches are
viable options for inference. In multiple imputation contexts,
the analyst must appropriately utilize the information from the
multiple datasets in the inferences; again, simply applying Ru-
bin’s (1987) rules to posterior means and variances is generally
not correct. An approach suggested by Gelman et al. (2004,
p. 520) is (i) simulate many draws from the posterior distrib-
ution in each imputed dataset, and (ii) mix all the draws. The
mixed draws approximate the posterior distribution. Gelman et
al. (2004) did not evaluate the properties of this approximation,
nor do the prominent texts on multiple imputation of Schafer
(1997) and Little and Rubin (2002).

In this article, we examine the approximation of Gelman et
al. (2004, p. 520) using simulation studies. We find that the
approach works well with large numbers of multiply-imputed
datasets. However, the usual advice for multiple imputation for
modest fractions of missing data—that five or ten completed
datasets are adequate for inferences—can result in unreliable
estimates of posterior distributions. We also point out the pit-
falls of incorrectly using Rubin’s (1987) rules on functionals of
posterior distributions. Specifically, we examine an approach
akin to some of those observed by Marshall et al. (2009): (i) es-
timate posterior quantiles in each completed dataset, and (ii) av-
erage them across the datasets. We argue and demonstrate that
this approach produces unreliable estimates of posterior distri-
butions.

2. DESCRIPTION OF THE APPROACHES

In this section, we motivate the approach of Gelman et al.
(2004, p. 520). We begin with brief reviews of Bayesian in-
ference with incomplete data and of multiple imputation. Let
Yinc = (Yobs, Ymis) be the n×p matrix of data values for n units,
where Yobs is the portion of Yinc that is observed, and Ymis is the
portion of Yinc that is missing. Let Q be a parameter of interest,
for example a regression coefficient. Let Qα be the value of Q
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such that∫ Qα

−∞
f (Q|Yobs) dQ

=
∫ Qα

−∞

∫
Ymis

f (Q|Yobs, Ymis)f (Ymis|Yobs) dYmis dQ

= α, (1)

where α is a desired quantile of the posterior distribution of Q.
Analysts can approximate this integral with Monte Carlo meth-
ods. First, draw Ymis from its posterior predictive distribution.
Second, draw a value of Q from its posterior distribution, given
the drawn Ymis. Third, repeat these two steps K times, where
K is very large. Fourth, sort the K simulated values of Q, and
select the (αK)th element of the sorted list. The result is an
estimate for Qα .

In multiple imputation, the analyst creates m completed
datasets, D(l) = (Yobs, Y

(l)
mis) where 1 ≤ l ≤ m, which are used

for analysis. Here, Y
(l)
mis is a draw from the posterior predictive

distribution of (Ymis|Yobs), or from an approximation of that dis-
tribution such as the approach of Raghunathan et al. (2001).

Typically, m is much smaller than K would be for Bayesian
inference for non-Gaussian distributions. Thus, with small m,
drawing one value of Q for each D(l) results in too few draws
of Q to get reasonable estimates of Qα . Instead, we can utilize
each completed dataset for more than just one draw of Q. To
motivate this, we re-express the integral in (1) as

α = lim
m→∞

1

m

m∑
l=1

∫ Qα

−∞
f

(
Q|Yobs, Y

(l)
mis

)
dQ. (2)

This suggests that, for any value of Q in the upper limit of the
integral, we can find the associated cumulative probability by
(i) sampling J values of Q in each D(l), where J is large,
(ii) finding the percentage of the J draws in each D(l) less
than the upper limit value, and (iii) averaging those percentages
across all m datasets, where m → ∞. Equivalently, the analyst
could mix all of the sampled draws from each dataset, and find
the percentage of elements less than the upper limit in the com-
bined draws. This process can be easily adapted to find Qα : try
different upper limits until one reaches the desired α probabil-
ity.

The approximation of Gelman et al. (2004, p. 520), which we
denote as Q̃α , is essentially an approximation of (2) for finite
m. Specifically, for each D(l) where l = 1, . . . ,m, the analyst
simulates J values of Q from f (Q|D(l)), where J is large. Let
f̂ (Q(l)) represent the J draws of Q obtained with D(l). The an-
alyst mixes all f̂ (Q(l)) together to create f̂ (Qall). The analyst
sorts the mJ draws in f̂ (Qall), and the α(mJ)th element of the
sorted list is the estimate of Qα .

We now use simulations to illustrate the properties of Q̃α .
We also use the simulations to emphasize that the naive ap-
proach of averaging posterior quantiles can produce poor es-
timates of Qα in comparison to Q̃α . To fix notation for the
naive approach, let Q

(l)
α be the value of Q in D(l) such

that
∫ Q

(l)
α

−∞ f (Q|Yobs, Y
(l)
mis) dQ = α. Then, Q̄α = ∑m

l=1 Q
(l)
α /m.

Clearly, Q̄α has nothing to do with (2). It is derived from con-
venience rather than theory.

3. ILLUSTRATIVE SIMULATIONS

The complete data, Yinc, comprise n = 50 values generated
independently from Bernoulli trials with π = 0.2. We intro-
duce missing data by randomly deleting 10%, 30%, or 50% of
the data completely at random (Rubin 1976). We use multiple
imputation to generate m = 5, m = 20, or m = 100 completed
datasets. We seek Qα , where α ∈ {0.025,0.25,0.75,0.975}, for
the posterior distribution of π . We generate Yinc and multiple
imputations 5000 times to approximate the sampling distribu-
tions of Q̃α and Q̄α .

To create each completed dataset, we first sample a value of
π from the appropriate Beta distribution based on Yobs. We use
a uniform prior distribution for π . We then draw Ymis from a
Bernoulli distribution using the sampled π . After the imputa-
tion steps, in each D(l) we draw J = 10,000 values of π from
Beta(

∑
(Yobs + Y

(l)
mis) + 1, n − ∑

(Yobs + Y
(l)
mis) + 1), which is

the posterior computed with D(l). To get Q̃α , we mix and sort
the mJ draws of π , and select the α(mJ)th element. To get
Q̄α , we compute the α-quantile in each D(l) and average them
across the m datasets.

Figure 1 shows the distributions of Q̃α − Qα and Q̄α − Qα

for α ∈ {0.025,0.25} across the 5000 replications with m =
100. Here, Qα is computed from f (π |Yobs). For each scenario,
Q̃α is nearly centered on Qα . There do not appear to be any
trends with the percentage of missing data, apart from the ex-
pected increase in variability as the percentage of missing data
increases. However, in additional simulations with m = 5 and
m = 20, typically Q̃α > Qα for small α, and Q̃α < Qα for
large α. This is evident in Figure 2, which shows that when
m = 5 and to a lesser extent when m = 20, the posterior inter-
vals based on Q̃α tend to be tighter than warranted for modest
m. This problem disappears when m = 100.

The inaccuracy when m = 5 merits closer inspection, be-
cause often practitioners only create five multiple imputations
for analysis. Across all missing-data scenarios, the median
lengths of the 50% and 95% posterior intervals are smaller
when m = 5 than when m = 100. Put another way, analysts ap-
pear to obtain sharper inferences by using five imputations than
using one hundred imputations. This does not imply that ana-
lysts should use small m for Bayesian inference after multiple
imputation; on the contrary, it implies that approximations Q̃α

based on small m are not reliable. Hence, analysts planning on
Bayesian inference after multiple imputation should generate a
large number of completed datasets.

What about Q̄α? As evident in Figure 1, Q̄α can differ sub-
stantially from Qα , and its performance worsens as the percent-
age of missing values increases. More often than not, Q̄α > Qα

for small α, and Q̄α < Qα for large α. Hence, as also evident
in Figure 2, analysts who construct posterior intervals based on
Q̄α tend to have tighter ranges than warranted.

What is wrong with the naive approach of averaging poste-
rior quantiles? Each Q

(l)
α is a summary of the posterior distri-

bution of Q estimated as if D(l) was in fact genuine data with
n records. However, the observed data comprise fewer than n

records, so that the actual posterior distribution of Q is more
dispersed than the complete-data posterior distribution. Thus,
each Q

(l)
α is biased toward the median, and so is their average.
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Figure 1. Boxplots of Q̄α − Qα and Q̃α − Qα in different settings with n = 50, m = 100, and 10%, 30%, or 50% missing data. The first three
plots in each panel are for Q̄α − Qα , and the second three plots in each panel are for Q̃α − Qα . The labels on the horizontal axis show the
percentage of missing data. Generally, Q̄α is substantially different than Qα , whereas Q̃α estimates Qα reasonably well.

Figure 2. Boxplots of differences in lengths of the approximate and true 50% and 95% posterior intervals with n = 50. The labels on the
horizontal axis show the percentage of missing data followed by the value of m, where 1 represents m = 5, 2 represents m = 20, and 3 represents
m = 100. The intervals based on Q̃α (top panel) are relatively poor approximations for modest m but good for large m. The intervals based on
Q̄α (bottom panel) are always unreliable.
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4. APPLICATION TO BIOASSAY DATA

To illustrate Bayesian inference after multiple imputation on
genuine data, we modify data from a bioassay experiment that
appears in the book by Gelman et al. (2004, pp. 88–93), who
took them from Racine et al. (1986). The data comprise two
measurements on n = 20 animals. Let xi be the natural loga-
rithm of the dose of a chemical compound administered to ani-
mal i, where xi ∈ {−0.86,−0.30,−0.05,0.73}. There were five
animals at each dose level. Let yi = 1 if animal i dies shortly
after receiving the dose, and let yi = 0 otherwise. There are no
missing data in the study. Therefore, we deleted a randomly se-
lected 20% of the yi values.

The goal of the analysis is to learn about the toxicity of the
compound, which we do with a logistic regression of Y on X.
Because of the small sample size, it is doubtful that the sam-
pling distributions of the estimated regression coefficients are
well-approximated by normal distributions. Following Gelman
et al. (2004), we therefore use a Bayesian logistic regression
model to learn about the toxicity of the compound, so that
yi |πi ∼ Bernoulli(πi) where logit(πi) = β0 + β1xi . We use the
noninformative prior distribution f (β0, β1) ∝ 1. The primary
targets of scientific interest are the posterior distributions of β0
and β1.

To multiply-impute the four missing values, we first draw a
value of (β0, β1) from its approximate posterior distribution us-
ing grid sampling. We substitute the drawn values into the equa-
tion for πi for each of the four animals with missing data. We
then draw values of Ymis from each animal’s Bernoulli distribu-
tion to create the completed dataset, D(l), where l = 1, . . . ,m.
We examine three scenarios: m = 5, m = 20, and m = 100.

For each D(l), we determine quantiles of f (β0, β1|D(l)) by
using grid sampling again. We sample J = 10,000 values from
the joint distribution for each completed dataset. By mixing the
mJ draws of (β0, β1), we can compute values of Q̃α .

Table 1 displays several quantiles for β0 and β1. When m =
100, the values of Q̃α are close to the corresponding values
of Qα . As expected, the differences between Q̃α and Qα are
largest when m = 5. For both β0 and β1, the posterior intervals

are too narrow when m = 5. The table also displays estimates
based on Q̄α . Once again, they are less reliable than those based
on Q̃α .

To see if the results in Table 1 for m = 5 are unusual, we
repeated the posterior simulation 100 times. In 57% of these
replications, Q̃0.975 −Q̃0.025 for β1 with m = 5 was shorter than
Q0.975 −Q0.025 for β1 from the observed data; roughly the same
trend held for the interquartile range for β1 and for the intervals
involving β0. The lengths of the one hundred Q̃0.975 − Q̃0.025
for β1 with m = 5 ranged from 15.8 (1.5 to 17.3) to 21.4 (3.0
to 24.4), as compared to a length of 19.5 for Q0.975 − Q0.025.
Thus, there are substantial chances of estimating inappropri-
ately short posterior intervals with Q̃0.975 − Q̃0.025, although
the risks appear to be random rather than systematic. Given the
potential for overstating accuracy, we would be reluctant to rec-
ommend or use m = 5 for this analysis.

We also repeated the analysis using an imputation model
that differs from the analysis model. Specifically, for imputa-
tions we assume that f (yij ) ∼ Bernoulli(πj ) in each of the
j = 1, . . . ,4 dosage strata. The results show the themes seen
in Table 1.

5. CLOSING REMARKS

As both multiple imputation and Bayesian inference grow in
popularity, we anticipate that practitioners will commonly use
Bayesian inference after multiple imputation. We hope that this
article reduces the number of practitioners who naively and in-
correctly average posterior quantiles and other functionals, and
encourages practitioners to use the approach of Gelman et al.
(2004, p. 520) with large m.

[Received May 2009. Revised January 2010.]
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