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A Scalable Bayesian Method for Integrating
Functional Information
in Genome-wide Association Studies
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Macular Degeneration Genomics Consortium

Genome-wide association studies (GWASs) have identifiedmany complex loci. However, most loci reside in noncoding regions and have

unknown biological functions. Integrative analysis that incorporates known functional information into GWASs can help elucidate the

underlying biological mechanisms and prioritize important functional variants. Hence, we develop a flexible Bayesian variable selection

model with efficient computational techniques for such integrative analysis. Different from previous approaches, our method models

the effect-size distribution and probability of causality for variants with different annotations and jointly models genome-wide variants

to account for linkage disequilibrium (LD), thus prioritizing associations based on the quantification of the annotations and allowing for

multiple associated variants per locus. Our method dramatically improves both computational speed and posterior sampling conver-

gence by taking advantage of the block-wise LD structures in human genomes. In simulations, our method accurately quantifies the

functional enrichment and performs more powerfully for prioritizing the true associations than alternative methods, where the power

gain is especially apparent when multiple associated variants in LD reside in the same locus. We applied our method to an in-depth

GWAS of age-related macular degeneration with 33,976 individuals and 9,857,286 variants. We find the strongest enrichment for

causality among non-synonymous variants (543more likely to be causal, 1.43 larger effect sizes) and variants in transcription, repressed

Polycomb, and enhancer regions, as well as identify five additional candidate loci beyond the 32 known AMD risk loci. In conclusion,

our method is shown to efficiently integrate functional information in GWASs, helping identify functional associated-variants and

underlying biology.
Introduction

Genome-wide association studies (GWASs) have identified

thousands of genetic loci for complex traits and diseases,

providing insights into the underlying genetic architec-

ture.1–5 Each associated locus typically contains hundreds

of variants in linkage disequilibrium (LD),6,7 most of

which are of unknown function and located outside pro-

tein-coding regions. Unsurprisingly, the biological mecha-

nisms underlying the identified associations are often

unclear8 and pinpointing causal variants is difficult.9

Recent functional genomic studies help understand and

pinpoint functional associations and mechanisms.10–12

Genetic variants can be annotated based on the genomic

location (e.g., coding, intronic, and intergenic), role in

determining protein structure and function (e.g., Sorting

Intolerant From Tolerant [SIFT]13 and Polymorphism

Phenotyping [PolyPhen]14 scores), ability to regulate gene

expression (e.g., expression quantitative trait loci [eQTL]

and allelic specific expression [ASE] evidence15,16),

biochemical function (e.g., DNase I hypersensitive sites

[DHS], metabolomic QTL [mQTL] evidence,17 and chro-

matin states18–20), evolutionary significance (e.g., Genomic

Evolutionary Rate Profiling [GERP] annotations21), and a

combination of different types of annotation (e.g.,

CADD22). Many statistical methods, including stratified
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LD score regression23 and MQS,24 can now evaluate

the role of functional annotations in GWASs through heri-

tability analysis. Preliminary studies also show higher pro-

portions of associated variants in protein-coding exons,

regulatory regions, and cell-type-specific DHSs.25–27

Integrating functional information into GWASs is

expected to help identify and prioritize true associations.

However, accomplishing this goal in practice requires

methods to account for both LD and computational cost.

Consider two recent methods, fGWAS26 and PAINTOR,27

as examples. fGWAS assumes that variants are indepen-

dent and there is at most one association signal per locus,

modeling no LD, which dramatically improves computa-

tional speed and allows fGWAS to be applied at genome-

wide scale; PAINTOR accounts for LD, assuming the

possibility of multiple association signals per locus, but is

computationally slow and can be used to fine-map small

regions only (�10 kb).

Here, we pair a flexible Bayesian method with an effi-

cient computational algorithm. Together the two represent

an attractive means to incorporate functional information

into association mapping. Our model accounts for geno-

type correlation due to LD, allows for multiple signals per

locus and, importantly, shares information genome-wide

to increase association-mapping power. Our algorithm

takes advantage of the local LD structure in the human
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genome28–30 and refines previous Markov chain Monte

Carlo (MCMC) algorithms to greatly improve mixing,

which is key when searching for independent signals

among many associated variants in LD (but less important

in other applications such as modeling total genomic

heritability). We refer to our method as the Bayesian func-

tional GWAS (bfGWAS). Below, we illustrate the benefits of

our method with extensive simulations as well as real

large-scale GWASs on age-related macular degeneration

(AMD)31 (33,976 individuals, 9,857,286 variants) and

skin cancer (17,624 individuals, 8,626,534 variants).
Material and Methods

Bayesian Variable Selection Model
Our method is based on the standard Bayesian variable selection

regression (BVSR) model32 (Supplemental Note; Figure S1A),

yn31 ¼ Xn3p bp31 þ en31 ;

bi � piN
�
0; t�1s2

i

�þ ð1� piÞd0ðbiÞ; ei � N
�
0; t�1

�
;

where yn31 is the centered phenotype vector with n individuals,

Xn3p is the centered genotype matrix with p genetic variants,

bp31 is a vector of genetic effect-sizes where each element

bi follows a ‘‘spike-and-slab’’ variable selection prior,

bi � piNð0; t�1s2i Þ þ ð1� piÞd0ðbiÞ. Different from the standard

BVSR, however, our method considers functional annotations

that classify variants into K non-overlapping categories. For

example, all variants could be annotated based on their most

important functions in a gene, such as non-synonymous, synon-

ymous, intronic, intergenic, or other genomic, which classifies

all variants into five non-overlapping categories.
Annotation-Specific Effect-Size Priors
We assume that variants in the same annotation category q share a

prior32,33 for effect sizes, bi � pqNð0; t�1s2qÞ þ ð1� pqÞd0ðbiÞ, with

the same category-specific parameters ðpq; s
2
qÞ. This model implies

that effect sizes are normally distributed as bi � Nð0; t�1s2qÞ with

probability pq, or set to zero with probability ð1� pqÞ, with d0ðbiÞ
denoting the point-mass function at 0. Here, pq represents the

(unknown) causal probability for variants in the qth category

and s2q represents the (unknown) corresponding effect-size vari-

ance. An enhancement to previous Bayesian models32,34,35 is

that wemodel both the proportion of associated variants and their

effect-size distribution in each annotation category. Note that our

model is different from simply applying BVSR on variants of each

annotation, because we model the LD among variants of different

annotations.

We assume independent, conjugate, and non-informative priors

for ðpq; s
2
qÞ, e.g., pq � Betaðaq; bqÞ with mean 10�6 and

s2q � InverseGammaðk1; k2Þ with k1 ¼ k2 ¼ 0.1. Although indepen-

dent and conjugate priors are assumed for the convenience of

deriving closed-form expressions for the conditional posterior

distributions (greatly saving computational cost), the posterior

distributions of ðpq; s
2
qÞ depend on each other through effect sizes

and the number of signals. Non-informative priors allow the

Bayesian estimates to be mainly determined by the likelihood

when there exist associations in the qth category (otherwise the

Bayesian estimates will be determined by the respective prior

modes; see derivation details in Supplemental Note). Particularly,
The American
assuming a conservative prior mean 10�6 for pq (equivalent to

assume one signal per 1M variants) enforces an initial sparse

model, which helps control false positives and barely affects iden-

tifying real signals. Taking k1 ¼ k2 ¼ 0.1 makes the Inverse Gamma

prior for s2q non-informative with mode at 0.09.

Our goal is to simultaneously make inference on the category-

specific parameters ðpq; s
2
qÞ that represent the importance of

each functional category, and on the variant-specific parame-

ters—effect-size bi and the probability of bis0 (referred as poste-

rior inclusion probability [PPi], representing association evidence,

i.e., the probability for the variant to be associated with the

phenotype). Our model shares information genome-wide to esti-

mate the category-specific parameters, which then inform the

variant-specific parameters. As a result, variant associations will

be prioritized based on the inferred importance of functional

categories.

Scalable EM-MCMC Algorithm
Because standard MCMC algorithms suffer from heavy computa-

tional burden and poor mixing of posterior samples for large

GWASs, we develop a scalable expectation-maximization MCMC

(or EM-MCMC) algorithm. Our algorithm is based on the observa-

tion that LD decays exponentially with distance and displays local

block-wise structure along the human genome.28–30,36,37 This

observation allows us to decompose the complex joint likelihood

of our model into a product of block-wise likelihoods (Appendix A

and Supplemental Note). Intuitively, conditional on a common

set of category-specific parameters ðpq; s
2
qÞ, we can infer ðbi; PPiÞ

by running the MCMC algorithm per genome block. A diagram

of this EM-MCMC algorithm is shown in Figure S1B.

Running MCMC per genome-block facilitates parallel

computing and reduces the search space. Unlike previous

MCMC algorithms for GWASs that use proposal distributions

based only on marginal association evidence (such as imple-

mented in GEMMA38), our MCMC algorithm uses a proposal

distribution that favors variants near the ‘‘causal’’ variants being

considered in each iteration and prioritizes among these neigh-

boring variants based on their conditional association evidence

(see Supplemental Note). Our strategy dramatically improves

the MCMC mixing property, encouraging our method to explore

different combinations of potentially associated variants in each

locus (Figure S2). In addition, we implemented memory-reduc-

tion techniques that reduce memory usage up to 97%, effectively

reducing the required physical memory from 120 Gb (usage by

GEMMA38) to 3.6 Gb for a GWAS with �33K individuals and

�400K genotyped variants (Appendix A and Supplemental

Note).

In practice, we segment the whole genome into blocks of 5,000–

10,000 variants, based on marginal association evidence, genomic

distance, and LD. We always ensure variants in LD (R2 > 0.1)

with significant signals (p < 5 3 10�8) are in the same block

(Appendix A). We first initialize the category-specific parameters

ðpq; s
2
qÞ, then run the MCMC algorithm per block (E-step), sum-

marize the MCMC posterior estimates of ðbi; PPiÞ across all blocks
to update ðpq; s

2
qÞ (M-step), and repeat the block-wise EM-MCMC

steps until the estimates of ðpq; s
2
qÞ converge (Figure S1B).

In addition, we calculate the regional posterior inclusion proba-

bility (regional-PP) per block that is the proportion of MCMC

iterations with at least one signal (see Supplemental Note).

Because Bayesian PP might be split among multiple variants in

high LD, the threshold of regional-PP > 0.95 (conservatively anal-

ogous to false discovery rate 0.05) is used for identifying loci.
Journal of Human Genetics 101, 404–416, September 7, 2017 405



A B Figure 1. Power Comparison by Simula-
tion Studies
Compare the power of bfGWAS, the stan-
dard Bayesian variable selection regression
model (BVSR), fGWAS, p value of single
variant test with conditional analysis,
with 100 simulation replicates and com-
plete sample size 33,976.
(A) Average ROC curves, larger area under
curve suggests higher power.
(B) Boxplot of the ranks of the true causal
SNP1 (with smaller p value) and SNP2,
higher rank (smaller rank value) suggests
higher power.
AMD and MGI GWAS Data
The GWAS data of age-related macular degeneration (AMD)

consist of 33,976 unrelated European samples (16,144 advanced

case subjects; 17,832 control subjects), and a total of 12,023,830

genotyped on a customized Exome-Chip and imputed against

the 1000 Genomes Project phase I reference panel.31,39 Advanced

AMD case subjects include both subjects with choroidal neovascu-

larization and subjects with geographic atrophy. Samples were

aggregated across 26 studies and genotyped centrally.31

The Michigan Genomics Initiative (MGI) data are the institu-

tional repository of DNA and electronic health records, collected

from patients recruited on the day of their elective surgery or pro-

cedure at the University of Michigan Health System. DNA was ex-

tracted from blood and samples were genotyped on the Illumina

HumanCoreExome v.12.1 array and then imputed against the

HRC reference panel.40 The MGI GWAS data studied in this paper

contain 17,624 unrelated European individuals and �8.7M geno-

typed or imputed variants with frequency> 0.5%. The phenotype

of skin cancer was defined as the presence of ICD9 code 232 (car-

cinoma in situ of skin) on two or more visits (2,359 case subjects).

The control phenotype was defined as the absence of ICD9 codes

(172–173.99) on all visits (15,265 control subjects). For both MGI

and the AMD genetic studies, all participants gave informed con-

sent and the University of Michigan IRB approved our GWAS

analyses.

Results

Simulation

We simulated phenotypes with the genotype data (chro-

mosomes 18–22) from the AMD GWAS,31 including

33,976 individuals and 52,549 variants with minor allele

frequency (MAF) > 0.05. We segmented this small genome

into 100 3 2.5 Mb blocks, each with �5K variants. Within

each block, we marked a 25 kb continuous region (starting

37.5 kb from the beginning of a block) as the potential lo-

cus. We randomly selected two causal SNPs per locus for

ten randomly selected loci. We simulated two complemen-

tary annotations to classify variants into ‘‘coding’’ and

‘‘noncoding’’ groups, where the coding variants account

for �1% overall variants but �10% variants within the

causal loci (matching the pattern in the real AMD data).
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We simulated two scenarios: (1) cod-

ing variants �533 enriched among

causal variants (7 coding versus 13
noncoding) and (2) no enrichment (randomly selecting

causal variants in risk loci with equally distributed annota-

tions). A total of 15% of phenotypic variance was divided

equally among causal variants. We compared bfGWAS

with single variant likelihood-ratio test, conditional anal-

ysis, fGWAS, and the standard Bayesian variable selection

regression model (BVSR, considering no functional infor-

mation). The single-variant test (also referred to as p value),

conditioned p value, fGWAS posterior association proba-

bility (PP, see Appendix A), BVSR PP, and bfGWAS PP

were used as criteria to identify associations. The reason

that we did not include PAINTOR into comparison is

because PAINTOR costs >1,000 CPU hr to finish analyzing

one 2.5 Mb genome-block with �5K variants.

We first compared power of different methods using

average ROC curves27,32 across 100 simulation replicates.

Because the p value is used differently from the other

‘‘fine-mapping’’ criteria (fGWAS PP, BVSR PP, bfGWAS

PP), we compare only the average ROC curves of fGWAS,

BVSR, and bfGWAS (Figure 1A). We found that bfGWAS

(modeling LD and allowing multiple signals per locus) out-

performed both fGWAS and BVSR. Specifically, with false

positive rate (FPR) 2 3 10�4, the power of identifying the

true associations is 0.55 by bfGWAS, 0.45 by BVSR, and

0.34 by fGWAS. In addition, for identifying associated

loci with regional-PP > 0.95, bfGWAS has power 0.98

and false discovery rate (FDR) 0.005, BVSR has power

0.97 and FDR 0.006, and fGWAS has power 0.97 and FDR

0.005.

In a typical GWAS, researchers identify a series of associ-

ated loci and then examine associated variants within each

locus independently. We examined the ability of each

method to prioritize the true associations in each locus.

Since we simulated two causal SNPs per locus (SNP1 and

SNP2), we examine the power for identifying each of these

separately (Figure 1B). All methods have approximately the

same median rank for causal SNP1 (typically, 2nd rank

among 150 SNPs in the locus), suggesting that the stron-

gest signal in a locus can often be identified without incor-

porating functional information and LD. The median rank



for the second causal SNP2 was the 2nd by bfGWAS, 3rd by

BVSR, 13th by fGWAS, and 6th by conditioned p value—

suggesting that incorporating functional information

improves power to identify multiple signals in a locus

and that fGWAS is limited by the assumption of at most

one signal per locus. Stratified results based on the LD

between two causal variants further demonstrate that

bfGWAS has the highest power for identifying the weaker

signal, especially when both SNPs are in high LD

(Figure S3).

Both bfGWAS and fGWAS correctly identified enrich-

ment in scenario 1 and properly controlled for the type I

error of enrichment in scenario 2, despite some numerical

issues for fGWAS (Figure S4). Moreover, bfGWAS estimated

the effect-size variance per annotation. For all 100 simula-

tion replicates under both scenarios, the 95% confidence

intervals of the log-ratio of estimated effect-size variances

between coding and noncoding overlapped with 0 (Fig-

ure S5), suggesting that effect-size variances were similar

between two annotations (matching the simulated truth).

In summary, our simulation studies show that, in com-

parison with competing methods, bfGWAS has highest

power, especially in loci with multiple associated variants.

Further, bfGWAS produces enrichment parameter esti-

mates that can help with interpretation of association

results.

GWAS of AMD

Next, we applied our method to the AMD GWAS data with

33,976 unrelated European individuals (16,144 advanced

case subjects; 17,832 control subjects). We analyzed

9,866,744 (�10M) low-frequency and common variants

(MAF > 0.5%) with three types of genomic annotations:

gene-based functional annotations by SeattleSeq, summa-

rized regulatory annotations,41 and the core 15 chromatin

states profiled by ChromHMM42,43 with respect to 127

consolidated epigenomes (ROADMAP, ENCODE).44

Coding Variation and AMD

We used SeattleSeq to classify variants according to their

impact on coding sequences (Table S1) and then applied

our method bfGWAS and fGWAS. bfGWAS identified

37 loci out of 1,063 considered genome blocks with

regional-PP > 0.95 (Tables S2, S3, and S5), including 32

among the 34 known AMD loci31 and 5 extra candidate

loci. Using the threshold of Bayesian PP > 0.1068 (roughly

equivalent to the p value 5 3 10�8 based on permutations

of AMD data; Figure S6), we identified 150 associated vari-

ants (Figure S8A; Table S3), with 47 distributed among

42,005 non-synonymous variants, 4 among 67,165 synon-

ymous coding variants, 54 among 3,679,235 intronic var-

iants, 18 among 5,512,423 intergenic variants (including

non-annotated variants), and 27 among 565,916 ‘‘other-

genomic’’ variants (UTR, non-coding exons, upstream

and downstream of genes). Very roughly, this corresponds

to fraction of associated variants of �1:1,000 among

non-synonymous variants, 1:15,000 among synonymous
The American
variants, 1:100,000 among intronic variants, 1:300,000

among intergenic variants, and 1:20,000 among other-

genomic variants.

Similarly, fGWAS identified 39 loci by regional-PP >

0.95, including all 34 known loci and the same 5 extra

candidate loci identified by bfGWAS (Tables S2, S4, and

S6; Figure S9B). A total of 94 associated variants were iden-

tified by fGWAS with fGWAS PP > 0.1068, including

22 non-synonymous, 6 coding-synonymous, 28 intronic,

15 intergenic, and 23 other-genomic signals. Compared

with bfGWAS, the proportion of loci that contain at least

one non-synonymous variant with PP > 0.1068 is smaller

(31% by fGWAS versus 49% by bfGWAS). Similarly, the

proportion of non-synonymous variants prioritized by

fGWAS is also smaller (30% by fGWAS versus 46% by

bfGWAS), indicating that bfGWAS places greater weight

on non-synonymous variants—which, as a group, appears

to have both a higher prior probability of association and

larger effect sizes when associated.

Besides replicating the association results within

known AMD loci,31 bfGWAS identified five additional

candidate loci (Table S5): missense rs7562391/PPIL3,

rs61751507/CPN1, rs2232613/LBP, downstream rs114318558/

ZNRD1ASP, and splice rs6496562/ABHD2. Among these

five candidate loci, fGWAS identified three with the same

top risk variants, a different top risk variant (coding-synon-

ymous rs61733667) for CPN1, and a nearby locus (up-

stream rs116803720/HLA-K) of ZNRD1ASP (Table S6).

Interestingly, there are several connections between these

candidate loci and known AMD loci. Specifically, the pro-

tein encoded by LBP is part of the lipid transfer protein

family (which also includes CETP among the known

AMD risk loci) that promotes the exchange of neutral

lipids and phospholipids between plasma lipoproteins.45

ZNRD1ASP has been associated with lipid metabolisms46

and ABHD2 has been associated with coronary artery

disease,47 two other traits where the AMD loci encoding

CETP, APOE, and LIPC are also involved. The gene CPN1

has been associated with age-related disease (specifically,

hearing impairment48).

Multiple Signals in a Single Locus

We use two examples to illustrate the importance of study-

ing multiple signals in a single locus. Our first example

focuses on a 1 Mb region around locus C2/CFB/SKIV2L

on chromosome 6 where 1,862 variants have p < 5 3

10�8. There are an estimated 4 independent signals

in the region by conditional analysis,31 1 variant with

fGWAS PP > 0.1068, 11 with BVSR PP > 0.1068, and 8

with bfGWAS PP > 0.1068. Interestingly, the alternative

methods (p value, fGWAS, and BVSR) identified intronic

SNP rs116503776/SKIV2L/NELFE as the top candidates

(p ¼ 2.1 3 10�114; fGWAS PP ¼ 0.912; BVSR PP ¼ 1.0),

while bfGWAS identified two missense SNPs, rs4151667/

C2/CFB (p ¼ 1.4 3 10�44; bfGWAS PP ¼ 0.917) and

rs115270436/SKIV2L/NELFE (p ¼ 2.8 3 10�99; bfGWAS

PP ¼ 0.633), as the top functional candidates (Figure 2;

Tables S2–S4).
Journal of Human Genetics 101, 404–416, September 7, 2017 407
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Figure 2. ZoomLocus Plots around rs4151667 in the Locus C2/CFB/SKIV2L
(A) –log(p values) by single variant tests.
(B) Posterior inclusion probabilities (PP) by the standard Bayesian variable selection regression model (BVSR).
(C) Posterior association probabilities (PP) by fGWAS.
(D) Bayesian inclusion probabilities (PP) by bfGWAS.
The top cyan squares in (A)–(C) denote the intronic variant rs116503776; the purple triangle in (D) denotes the non-synonymous
variant rs4151667.
A haplotype analysis describing the odds ratios (ORs) for

all possible haplotypes for SNPs rs116503776, rs4151667,

and rs115270436 helps clarify the region. Intronic SNP
408 The American Journal of Human Genetics 101, 404–416, Septem
rs116503776 with the smallest p value appears to be asso-

ciated with the phenotype by tagging the other two

missense SNPs (Table S15). In particular, haplotypes with
ber 7, 2017
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Figure 3. Category-Specific Parameter Estimates with 95% Error Bars by bfGWAS for Gene-Based Annotations and Regulatory
Annotations
(A and C) Causal probabilities.
(B and D) Effect-size variances.
The estimates of UTR in (C) and (D) were estimated as their prior values due to no association was found for this annotation (hence not
shown in the plots). The estimate of the effect-size variance for the ‘‘Others’’ category in (D) is also close to the prior because of low
region-association evidence, hence it has a wide 95% error bar. The error bars denote the 95% confidence intervals for the category-spe-
cific parameter estimates.
rs116503776 can either increase or decrease risk, depend-

ing on alleles at the other two SNPs. To further confirm

the importance of the missense SNPs rs4151667 and

rs115270436, we compared the AIC/BIC/loglikelihood

between two models: one model with the top two inde-

pendent signals (rs116503776 and rs114254831) identi-

fied by single-variant conditional analysis,31 versus the

other model with the top two signals (rs4151667 and

rs115270436) identified by bfGWAS. As expected, the sec-

ond model has smaller AIC/BIC and larger loglikelihood

than the first one (Table S16). Thus, we can see that while

alternative methods (p value, fGWAS, and BVSR) focus on

the SNP with the smallest p value, our bfGWAS method

finds an alternative pairing of missense signals that better

accounts for all data.

Our second example focuses on a 1 Mb region around

gene C3 on chromosome 19 (Figure S9) with 112 genome-

wide significant variants with p < 5 3 10�8. fGWAS dis-

covered only a single missense signal, rs2230199, with the

most significant p¼ 1.73 10�77 (top blue triangle in Figures

S9A and S9C). However, both BVSR and bfGWAS identified
The American
twomissense variants with PPs¼ 1.0 and five intronic vari-

ants with 0.11 < PPs < 0.18. The top two missense signals,

rs2230199 and rs147859257 (241 base pairs apart), were

confirmed by conditional analysis,31 where the second

signal rs147859257has conditionedp¼ 6.0310�33 (purple

triangle in Figures S9B and S9D), overlapping with

rs2230199. These two missense signals match the inter-

pretation of previous studies.49–51 Because five other in-

tronic variants (rs11569479, rs11569470, rs201063729,

rs10408682, and rs11569466) are in high LD with R2 >

0.98 between each other, we believe this is the third inde-

pendent signal whose Bayesian PP was split among five

variants in high LD by bfGWAS.

Enrichment Analysis

bfGWAS estimated that non-synonymous variants are

10–100 times more likely to be causal than variants in

other categories and that they also have larger effect sizes

(Figures 3A and 3B). To better compare enrichment among

multiple categories, we define two new sets of parameters

(Supplemental Note). The first set of parameters ðpq=pavgÞ
is defined to contrast the posterior association probability
Journal of Human Genetics 101, 404–416, September 7, 2017 409



A B Figure 4. Top Five Enriched Chromatin
States Identified by bfGWAS, using the
AMD GWAS Data with Respect to 127
Epigenomes
(A) Boxplot of the category-specific causal
probabilities for the top five enriched chro-
matin states.
(B) Boxplot of the effect-size variances for
the top five enriched chromatin states.
estimate ðpqÞ for each category to the genome-wide average

ðpavgÞ. The second set of parameters ðs2q=s2avgÞ is similarly

defined to contrast the effect-size variance from each cate-

gory to the genome-wide average. Moreover, the square

root of the effect-size variance reflects the effect-size

magnitude because of the prior assumption for the effect

size in our model.

Compared to the genome-wide average probability of

causality pavg ¼ 4:3310�6 (Figure S12A), we found that

non-synonymous category were 533 more likely to be

causal (p ¼ 7.24 3 10�84), that coding-synonymous and

other variants were 4.33 and 2.23 more likely (p ¼ 0.005,

0.003), and that intergenic variants were 0.73 less likely

(p ¼ 4.9 3 10�6), while the intronic variants matched

the genome-wide average (p ¼ 0.659). In addition,

compared to the genome-wide average effect-size variance

(s2avg ¼ 0:02; Figure S12B), we found that the effect size vari-

ance of was 1.93 larger for non-synonymous variants (p ¼
0.014; i.e., 1.43 larger effect-size), and 0.43 smaller for

variants in the intronic category (p ¼ 4.5 3 10�6);

remaining categories were not significantly different (p >

0.2). The estimated enrichment parameters by fGWAS

show a similar pattern, although the contrast of the esti-

matedenrichment fornon-synonymousversusother anno-

tations is not as pronounced as by bfGWAS (Figure S12A).

Analysis with Regulatory Annotations

In addition, we analyzed the GWAS data of AMD with the

summarized regulatory annotations:41 coding, UTR, pro-

moter (defined as within 2 kb of a transcription starting

site), DHS in any of 217 cell types, intronic, intergenic,

and ‘‘others’’ (not annotated as any of the previous six cate-

gories). Overall GWAS results were similar as the ones

described in previous context (Tables S7–S10). Compared

to the genome-wide average association probability (pavg ¼
4:03310�6; Figure S12C), we found that the association

probability of the coding category was 283 higher (p <

2.2 3 10�16), the promoter was 2.63 (p ¼ 0.028) higher,

and the intergenic and ‘‘others’’ were 0.53 and 0.93

less (p ¼ 5.3 3 10�4, 0.033), while the DHS and intronic

were not significantly different (p > 0.1). In addition,
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compared to thegenome-wide average

effect-size variance ðs2avg ¼ 0:024Þ, we

found that the effect-size variance of

the coding category was 1.93 larger

(p ¼ 0.019; i.e., 1.43 larger effect size)

and the DHS and intronic were 0.53
less (p ¼ 0.011, 0.007), while the promoter, intergenic,

and ‘‘others’’ were not significantly different (p > 0.1;

Figure S12D). Here, fGWAS identified a slightly different

enrichment pattern (Figure S12B),whereUTRwas identified

as the second most enriched category. This is presumably

because fGWAS assumes one signal per locus and tends to

prioritize the variantwith the smallest p value in each locus,

e.g., UTR variants rs1142/KMT2E/SPRK2 and rs10422209/

CNN2 have the highest fGWAS PP and the smallest p value

in their respective locus (Tables S2 and S8).

Analysis with Chromatin States

Last, we considered the annotations of core 15 chromatin

states profiled byChromHMM43with respect to 127 consol-

idated epigenomes (ROADMAP, ENCODE):44 active TSS

(TssA), flanking active TSS (TssAFlnk), transcription at gene

50 and 30 (TxFlnk), strong transcription (Tx), weak transcrip-

tion (TxWk), genic enhancers (EnhG), enhancers (Enh), ZNF

genes & repeats (ZNF/Rpts), heterochromatin (Het), biva-

lent/poised TSS (TssBiv), flanking bivalent TSS/Enh

(BivFlnk), bivalent enhancer (EnhBiv), repressed PolyComb

(ReprPC), weak repressed PolyComb (ReprPCWk), and

quiescent/low (Quies).

With each set of chromatin states profiled per epige-

nome, we applied bfGWAS on the GWAS data of AMD

and then counted the frequency of the top 5 enriched

chromatin states across all 127 epigenomes. We found

that the associations are mostly enriched with strong

transcription (Tx), weak transcription (TxWk), repressed

PolyComb (ReprPC), enhancers (Enh), and Quies

(Figure 4). Specifically, the highest estimates of the causal

probabilities are 3.0 3 10�5 for strong transcription with

respect to the fetal brain male tissue (E081), 1.2 3 10�5

for weak transcription with respect to the adipose nuclei

(E063), 3.1 3 10�5 for repressed PolyComb with respect

to the spleen tissue (E113), 1.7 3 10�5 for enhancers

with respect to the ovary tissue (E097), and 3.9 3 10�6

for Quies with respect to the pancreatic islets.

We further examined the list of variants that contribute

95% posterior probabilities in the identified loci with

regional-PP > 95%. We found that the results accounting



for the chromatin states that are profiled with respect to

the epigenome of fetal thymus (E093) gave the shortest

list (average 11 variants per locus, and we present the cor-

responding results as an example (Figures S12E, S12F,

S13A, and S13B; Tables S11–S14). For this set of enrich-

ment analysis, we found that the repressed PolyComb

had the highest causal probability (3.83 higher than the

genome-wide average pavg ¼ 4:0310�6, p ¼ 6.7 3 10�7;

Figure S12E), and that all chromatin states have compara-

ble effect-size variances (Figure S12F). Here, fGWAS identi-

fied transcription at gene 50 and 30 (TxFlnk) as the most en-

riched chromatin state (Figure S13C).
MGI GWAS of Skin Cancer

To illustrate the benefits of using bfGWAS for GWAS data

that have relatively fewer loci, we further analyzed the

MGI GWAS data with the phenotype of skin cancer, with

17,624 unrelated European samples (2,359 case subjects

versus 15,265 control subjects) and �8.7M variants with

MAF > 0.5%. We corrected the phenotype of skin cancer

with respect to age, sex, PC1-4, considered the same

gene-based annotations (from SeattleSeq) as for the AMD

GWAS, and compared the GWAS results by p value,

BVSR, fGWAS, and bfGWAS.

For this GWAS data of skin cancer, all method identified

the same four loci: SLC45A2, IRF4, MC1R, and RALY (Fig-

ures S14 and S15). Both bfGWAS and fGWAS identified

that non-synonymous is the most enriched annotation

(Figure S16). Although BVSR, fGWAS, and bfGWAS all pro-

duced the highest PP for the leading SNP with the smallest

p value, our bfGWAS method outperformed BVSR for

identifying the leading SNP at locus SLC45A2, as well as

produced an additional and independent non-synony-

mous signal in locusMC1R (missed by fGWAS) for allowing

multiple signals per locus as well as accounting for func-

tional information and LD (Figure S17). In addition, our

bfGWAS method avoids the false signal on chromosome

3 by BVSR for using annotation-specific priors. Specifically,

by the threshold of PP > 0.1068, bfGWAS identified 9

associated variants (3 non-synonymous, 4 intronic, and

1 other genomic), and 9 by fGWAS (2 non-synoymous, 5

intronic, and 2 intergenic).

Therefore, this set of GWAS analyses further confirmed

the advantages of using our bfGWAS method for inte-

grating functional information and fine-mapping loci

with multiple signals.
Discussion

Here, we describe a scalable Bayesian hierarchical method,

bfGWAS, for integrating functional information in GWASs

to help prioritize functional associations and understand

underlying genetic architecture. bfGWAS models both

association probability and effect-size distribution as a

function of annotation categories for improving fine-map-

ping resolution. Unlike previousmethods,26,27 bfGWAS ac-
The American
counts for LD and allows for the possibility of multiple

signals per locus while remaining capable of genome-

wide inference. Further, bfGWAS employs an improved

MCMC sampling strategy to greatly improve the mixing

of MCMC samples, which ensures the capability of identi-

fying a list of independent association candidates.

By simulation studies, we demonstrated that bfGWAS

had higher power than the alternative methods for identi-

fying multiple signals in a single locus by accounting for

both functional information and LD. We also showed

that bfGWAS accurately estimated the enrichment pat-

terns under scenarios with or without enrichment for

one annotation in simulations. In the real GWASs of

AMD and skin cancer, we further confirmed the advan-

tages of identifying multiple independent signals per locus

and prioritizing important functional associations by

bfGWAS. Further, we gave two fine-mapped AMD loci,

C2/CFB/SKIV2L and C3, by bfGWAS as examples with jus-

tifications by haplotype analysis, model comparison, and

previous findings. Thus, we believe our method is useful

for understanding the underlying genetic architecture of

complex traits and diseases for efficiently integrating func-

tional information into GWASs.

Extending bfGWAS to deal with overlapping or quanti-

tative annotations might seem trivial in theory, by

assuming a logistic model with multiple functional cova-

riates (both categorical and quantitative) for pi in the

BVSR model. However, the posterior estimates for the

coefficients in the logistic model of pi no longer have

analytical formulas in the M-step of the EM-MCMC algo-

rithm (Supplemental Note). Specifically, overestimated pi

will inflate the number of false positives. In preliminary

analysis, we encountered computational challenges of

controlling the false positive rate, which requires further

studies.

Here, bfGWAS makes a key assumption that the variant

correlation matrix has a block-wise structure, which allows

us to segment the genome into approximately indepen-

dent blocks, analyze variants per block by MCMC, and

summarize genome-wide information by an EM algorithm.

In parallel to our study, many recent studies have also

explored the benefits of dividing the human genome

into approximately independent LD blocks to facilitate

genome-wide analyses.26,52 Although the standard seg-

mentation methods (e.g., based on genomic location52 as

we adopted here, or the number of variants per block26)

are often sufficient in practice, we expect that a better

segmentation method30 based on LD blocks will further

increase the association mapping power.

The biggest limitation of bfGWAS is probably computa-

tional cost, as we perform MCMC using the complete

genotype data. Specifically, bfGWAS took 5,000 CPU hr

(�5 hr with parallel computations on 1,000 CPUs for

the 1,063 genome blocks) to analyze the AMD GWAS

data with 33,976 individuals and 9,857,286 variants.

Implementing bfGWAS with summary statistics is ex-

pected to reduce the computation cost significantly, which
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is part of our continuing research. In addition, the varia-

tional approximation53,54 and other approximations55,56

of MCMCmay provide an efficient alternative for posterior

inference in large GWASs.
Appendix A

Bayesian Hierarchical Model Accounting for Functional

Information

Recall the standard Bayesian variable selection regression

(BVSR) model as described in the Material and Methods,

yn31 ¼ Xn3p bp31 þ en31 ;

bi � piN
�
0; t�1s2

i

�þ ð1� piÞd0ðbiÞ; ei � N
�
0; t�1

�
:

We assume that variants in the same functional category

have the same spike-and-slab prior, bi � piNð0; t�1s2i Þþ
ð1� piÞd0ðbiÞ, for the effect sizes. That is, pi ¼ pq; s

2
i ¼ s2q

for variants of the qth functional annotation category.

Consequently, pq denotes the category-specific causal

probability and s2q denotes the category-specific effect-

size variance (the square root of s2q reflects the magnitude

of effect size).

We further assume the following independent hyper

priors:34

pq � Beta
�
aq; bq

�
; s2

q � IGðk1; k2Þ; pqts2
q ;

where pq follows a Beta distribution with positive shape pa-

rameters aq and bq and s2q follows an Inverse-Gamma distri-

bution with shape parameter k1 and scale parameter k2. In

order to adjust for theunbalanced distributionof functional

annotations among all variants and enforce a sparse model

in our analysis, we choose values for aq and bq such that

the Beta distribution has mean aq=ðaq þ bqÞ ¼ 10�6 with

(aq þ bq) equal to the number of variants in category q. We

set k1 ¼ k2 ¼ 0.1 in our analysis to induce non-informative

prior for s2q. Note that t is fixed as the phenotype variance

value in our Bayesian inferences (Supplemental Note).
Bayesian Inference

We introduce a latent indicator vector gp31 to facilitate

computation, where each element gi is a binary variable

and indicates whether bi ¼ 0 by gi ¼ 0 or bi � Nð0; t�1s2i Þ
by gi ¼ 1 (gi corresponds to the ith variant with genetic ef-

fect-size bi). Equivalently,

gi � BernoulliðpiÞ; b�g � d0; bg � MVN jg j
�
0; t�1Vg

�
;

where jg j denotes the number of 1s in g; b�g denotes the

zero effect-size vector with gi ¼ 0; bg denotes the non-zero

effect-size vector with ðgj ¼ 1; j ¼ 1; .; jg j Þ; and Vg de-

notes the diagonal covariance matrix, diagðs21; .; s2jg j Þ,
corresponding to non-zero effect-sizes. Consequently,

the expectation of gi is an estimate of the posterior inclu-

sion probability (PP) for the ith variant, E½gi� ¼
Probðgi ¼ 1Þ ¼ PPi.
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The posterior joint distribution of our proposed Bayesian

hierarchical model is proportional to

P
�
b; g; p;s2; t j y; X; A

�
fPðy j X;b;g; tÞ3

P
�
b; jA; p;s2; g; t

�
Pðg j pÞPðpÞP�s2

�
PðtÞ;

where p ¼ ðp1; .; pQÞT , s2 ¼ ðs21; .; s2QÞT ; A is the p3 Q

matrix of binary annotations, and Q is the total number of

annotations. The goal is to estimate the category-specific

parameters ðp; s2Þ and the variant-specific parameters

ðb; E½g�Þ from their posterior distributions, conditioning

on the data ðy; X; AÞ. Here, the category-specific parame-

ters denote the shared characteristics among all variants

with the same annotation, which are also called enrich-

ment parameters.

EM-MCMC Algorithm

The basic idea of the EM-MCMC algorithm is to segment

the whole genome into approximately independent blocks

each with 5,000–10,000 variants, run MCMC algorithm

per block with fixed category-specific parameter values

ðp; s2Þ to obtain posterior estimates of ðb; E½g�Þ (E-step),

then summarize the genome-wide posterior estimates of

ðb; E½g�Þ and update values of ðp; s2Þ by maximizing their

posterior likelihoods (M-step). Repeat such EM-MCMC it-

erations for a few times until the estimates of ðp; s2Þ
(maximum a posteriori estimates, i.e., MAPs) converge

(Figure S1).

We derive the log-posterior-likelihood functions for

ðp; s2Þ and the analytical formulas for their MAPs. In addi-

tion, we construct their confidence intervals using Fisher

information, whose analytical forms are derived for our

Bayesian hierarchical model (Supplemental Note). In our

practical analyses, we find that, in general, with about 5

EM iterations and 50K MCMC iterations per block, the

estimates for ðp; s2Þ would achieve convergence. Our

method of integrating functional information into GWAS

by using the above Bayesian hierarchical model and EM-

MCMC algorithm is referred as ‘‘Bayesian Functional

GWAS’’ (bfGWAS).

Convergence Diagnosis

The MCMC algorithm implemented in bfGWAS is essen-

tially a random walk over all possible linear regression

models with combinations of variants, which can start

with either a model containing multiple significant vari-

ants by sequential conditional analysis or the most signif-

icant variant by p value. In each MCMC iteration, a new

model is proposed by including an additional variant, by

deleting one variant from the current model, or by switch-

ing one variant within the current model with one outside;

and then up to acceptation or rejection by the Metropolis-

Hastings algorithm (Supplemental Note). Importantly, we

refine the standard proposal strategy for the switching

step by prioritizing variants in the neighborhood of the

switch candidate according to their conditional associa-

tion evidence (e.g., p values conditioning on variants,
ber 7, 2017



except the switch candidate, in the current model). As a

result, this MCMC algorithm encourages our method to

explore different combinations of potential signals in

each locus and significantly improves the mixing property.

We used the potential scale reduction factor (PSRF)57 to

quantitatively diagnose the MCMC mixing property.

PSRF is essentially a ratio between the average within-

chain variance of the posterior samples and the overall-

chain variance with multiple MCMC chains. From the

example plots of the PSRFs of Bayesian PPs (Figure S2),

for 58 top marginally significant SNPs (with p < 5 3

10�8) in the WTCCC GWAS of Crohn disease,1 we can

see that about half of the PSRF values by the standard

MCMC algorithm (used in GEMMA35) exceed 1.2, suggest-

ing that the standard MCMC algorithm has poor mixing

property. In contrast, the PSRF values by our MCMC algo-

rithm are within the range of (0.9, 1.2), suggesting that our

MCMC algorithm has greatly improved mixing property.

Key Implementation Details

We employ two computational techniques to save mem-

ory in the bfGWAS software. One is to save all genotype

data as unsigned characters in memory, because unsigned

characters are equivalent to unsigned integers in (0, 256)

that can be easily converted to genotype values within

the range of (0.0, 2.0) by multiplying with 0.01. This tech-

nique saves up to 90% memory compared to saving geno-

types in double type. Second, with an option of in-memory

compression, bfGWAS will further save additional 70%

memory. As a result, we can decrease the memory usage

from �120 GB (usage by GEMMA35) to �3.6 GB for a

typical GWAS dataset with �33K individuals and �400K

variants.

The bfGWAS software wraps a Cþþ executable file for

the E-step (MCMC algorithm) and an R script for the

M-step together by a Makefile, which is generated by a

Perl script and enables parallel computation through sub-

mitting jobs. Generally, 50K MCMC iterations with �5K

variants and �33K individuals require about 300 MB

memory and 1 hr CPU time on a 1.6 GHz core, where

the computation cost is of order 0(nm2) with the sample

size (n) and number of variants (m) considered in the linear

models during MCMC iterations (usually m < 10). The

computation cost for M-step is almost negligible due to

the analytical formulas of the MAPs.

fGWAS

In this paper, the fGWAS results were generated by using

summary statistics from single variant likelihood-ratio

tests and the same annotation information used by

bfGWAS. fGWAS26 produces variant-specific posterior

association probabilities (PPs), segment-specific PPs, and

enrichment estimates for all annotations. We used the

same genome segmentation as used by bfGWAS for fGWAS

in both simulations and real data analyses, to produce

comparable results. The final fGWAS PP is given by the

product of the variant-specific PP and the corresponding
The American
segment-specific PP, and the fGWAS regional-PP is given

by the highest segment-specific PP in a region or genome

block.

Simulation Studies

We used genotype data on chromosomes 18–22 from

the AMD GWAS (33,976 individuals and 241,500 vari-

ants with MAF > 0.05) to simulate quantitative pheno-

types from the standard linear regression model yi ¼
XT

i bþ ei; i ¼ 1; .; 33976, where Xi is the genotype vec-

tor of the ith individual and ei is the noise term generated

fromNð0; s2e Þ. We segmented the genotype data into 1003

2.5 Mb blocks each with �5,000 variants. Within each

block, we marked a �25 kb continuous region (starting

37.5 kb from the beginning of a block) as the causal locus

and randomly selected two causal SNPs if the genome

block was selected as a risk locus. Two complementary

annotations (‘‘coding’’ versus ‘‘noncoding’’) were simu-

lated, where the coding variants account for �1% overall

variants but �10% variants within the causal loci (match-

ing the pattern in the real AMD analysis). We selected pos-

itive effect-size vector b and noise variance s2e such that a

total of 15% phenotypic variance was equally explained

by causal SNPs. We controlled the enrichment-fold of cod-

ing variants by varying the number of coding variants

among the causal SNPs.

We compared bfGWAS with p value, conditioned

p value, and fGWAS. In the simulation studies, p values

were obtained from a series of likelihood-ratio tests based

on the standard linear regression model. p values condi-

tioning on the top significant variant per locus were used

to identify the second signal by conditional analysis.

fGWAS was implemented with summary statistics from

single variant tests and the same genome segmentation

as used by bfGWAS. We failed to include PAINTOR in the

comparison, because PAINTOR cannot complete the anal-

ysis for one block in >1,000 CPU hr (on a 2.5 GHz, 64-bit

CPU) and is thus expected to require>1million CPU hr for

a genome-wide analysis.

GWAS of AMD

In the GWAS data of AMD, all genotypes were generated by

a customized chip that contains (1) the usual genome-wide

variant content, (2) exome content comparable to the

Exome chip (protein-altering variants across all exons),

(3) variants in known AMD risk loci (protein-altering vari-

ants and previously associated variants), and (4) previously

observed and predicted variation in TIMP3 and ABCA4

(two genes implicated in monogenic retinal dystrophies).

The genotyped variants (439,350) were then imputed to

the 1000 Genomes reference panel (phase I),58 resulting a

total of 12,023,830 variants.

The software bfGWAS used dosage genotype data and

standardized phenotypes. Phenotypes were first coded

quantitatively with 1 for case subjects and 0 for control

subjects; then corrected for the first and second principle

components, age, gender, and source of DNA samples;
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and then standardized to have mean 0 and standard devi-

ation 1. In order to make the Bayesian inferences scalable

to the AMDGWAS data (33,976 individuals, 9,866,744 var-

iants with MAF > 0.5%), we segmented the whole genome

into 1,063 non-overlapped blocks, such that each block

has length �2.5 Mb (containing �10,000 variants) and

all previously identified loci along with variants in LD

(R2 > 0.1) were not split. Then we applied the EM-

MCMC algorithm with 5 EM steps and 50,000 MCMC iter-

ations per block (including 50,000 extra burn-ins).

For comparison, p values were obtained by a series of

likelihood-ratio tests, using the same ‘‘quantitative’’

phenotype vector as used by bfGWAS; fGWAS was imple-

mented with the summary statistics from single variant

tests and the same genome segmentation as used by

bfGWAS; and a standard Bayesian variable selection regres-

sion (BVSR) method that models no functional informa-

tion was also applied.

Three types of genomic annotations were considered

for analyzing the AMDdata: gene-based functional annota-

tions of SNPs and small indels from SeattleSeq, summarized

regulatory annotations,41 and the chromatin states profiled

respectively for 127 epigenomes byChromHMM.19,42,43 For

variants annotated with multiple functions, we used the

most severe function in the analysis: non-synonymous >

coding-synonymous > other-genomic > intronic > inter-

genic for the gene-based annotations; coding > UTR >

promoter > DHS > intronic > intergenic > ‘‘others’’ for

the summarized regulatory annotations.

We further did sensitivity analysis using varying prior

means as well as starting values (10�6, 5 3 10�6, 10�5)

for pq, and varying starting values (10, 5, 1) for s2q in

bfGWAS with gene-based functional annotations. As ex-

pected, the results showed that the posterior inference

results were not affected by various practical prior assump-

tions and starting values of the category-specific parame-

ters. Specifically, all three sets of results identified the

same 37 risk loci, comparable number of associated vari-

ants with Bayesian PP> 0.1068, as well as the same enrich-

ment pattern (Figure S10).
Accession Numbers

The accession number for the AMD genotype data analyzed in this

paper is dbGaP: phs001039.v1.p1.
Supplemental Data

Supplemental Data include 17 figures, 16 tables, and a detailed

technical note and can be found with this article online at

http://dx.doi.org/10.1016/j.ajhg.2017.08.002.
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Web Resources

bfGWAS, https://github.com/yjingj/bfGWAS

ChromHMM, http://compbio.mit.edu/ChromHMM/

fGWAS, https://github.com/joepickrell/fgwas

GEMMA, https://github.com/genetics-statistics/GEMMA

Profiled chromatin states with respect to 127 epigenomes, http://

egg2.wustl.edu/roadmap/web_portal/chr_state_learning.html#

core_15state

SeattleSeq, http://snp.gs.washington.edu/SeattleSeqAnnotation138/
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