
 1 / 10 

 

Method Details 1 

We consider the following linear regression model that links phenotypes to genotypes 2 

 � = �� + �,           	
 ∼ �0, ����. (1) 

where y is an n-vector of phenotypes; � is an n by m matrix of genotypes; � is an m-vector of 3 

effect sizes; and � is an n-vector of residual errors and each 	
  follows an independent and 4 

identically distributed normal distribution with variance ���; and n is the sample size, m is the 5 

number of SNPs. We center the phenotype y and standardize each column of the genotype matrix 6 

� to have zero mean and unit variance, allowing us to ignore the intercept in the model.  7 

 8 

For the j-th SNP, we denote �� = �1, ���, ���, ⋯ , �����
 as a (c+1)-vector of realized annotation 9 

values including a one that represents the intercept. These annotations can be either discrete or 10 

continuous. To simplify presentation, we assemble the annotation vectors across all SNPs into an 11 

m by (c+1) annotation matrix A, where each row contains the annotation vector for the 12 

corresponding SNP 13 

 � = � 1    ��� ⋯ ���⋮ ⋱ ⋮1    �"� ⋯ �"�
#. (2) 

We assume that the effect size of each SNP $� is independent and follows a normal distribution 14 

with mean zero and a variance ��� that is SNP specific. We further impose an extra layer of 15 

hierarchy by assuming that the SNP specific variance ��� is a function of the annotation vector 16 

 $� ∼ ��0, ��� %⁄ � ,     ��� = ��  '∗, (3) 

where '∗ =  �)*' � is a (c+1)-vector of coefficients that include an intercept +, and a c-vector of 17 

annotation coefficients '. It is reasonably assumed that the annotation coefficient 'is large when 18 

the corresponding annotation is predictive of the SNP effect size. Therefore, the annotation 19 

coefficients can be used to evaluate the importance of annotations. Above, we center the second 20 

to the (c+1)-th columns of �� to have mean zero across SNPs.  21 

 22 

Incorporating equation (3) into (1) leads to a joint model 23 

 � ∼ MVN0, 0�,       0 = �1'∗��� +  ���2, (4) 

where 1'∗� is an m by m diagonal matrix with 345 diagonal element 67∗��� = ��� %⁄ , 0 is an m 24 
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by m covariation matrix, and MVN denotes the multivariate normal distribution. Note that above 25 

we have assumed a linear relationship between ��� and the annotations ��. While the linearity 26 

assumption does not always guarantee that each estimated variance �89 �
 is positive, the combined 27 

genetic variance �17∗���  in real data applications are always positive definite. We also 28 

acknowledge that we instead could have modeled a linear relationship between the log 29 

transformed variance and annotations (i.e. log ��� = �� 	') to ensure the positive value of the 30 

estimated �89 �
. However, we found that the log transformation of the variance made the inference 31 

algorithm unstable. Therefore, we use the simplified linear modeling assumption and set the 32 

estimated  �89 �
 to be zero in the rare cases when it is estimated to be negative.  33 

 34 

Our goal is to infer the annotation coefficients '∗. To do so, we follow the main idea of LDSC 35 

[1] and MQS [2] in using the marginal =� statistics. Unlike the detailed algorithms of LDSC or 36 

MQS that were initially designed for a single binary annotation, however, we applied the 37 

generalized estimating equation (GEE) [3, 4] inference method that allows for the joint inference 38 

of multiple binary and continuous annotations. Specifically, we first obtain the marginal =� 39 

statistics for the 345 SNP as =>� ? @AB.DB.DA@
E , where F.� is the 345 column of the genotype matrix and 40 

the approximation assumes small effect sizes – a property holds well in most GWASs. We can 41 

obtain the expectation of the marginal =� statistics as  42 

 E�=>�� = E H@AB.DB.DA@
E I = �

E JK LF.�F.��M����N = �
E ∑ B.PAB.DB.DAB.PQPR""
S� + 	���. (5) 

To simply notation, we denote R as an m by m correlation matrix  43 

T = �U�
E , V = T	ο	T	as an m by m LD matrix in the form of a Hadamard product between two T 44 

matrices (i.e. Ω
� = Y
��  for Z345  element), 1"  as an m vector of 1s, and [7∗� � �7∗
"  as an m 45 

vector of the diagonal elements of 1'∗�. We can express the m-vector E=��	as 46 

 E=�� 	� H\V�% 	, 1"I H+
∗

���I � ]^, (6) 

where we further denote ] = EV�
" , 1"� as the m by (c+2) design matrix and ^ = H+∗

���I as the 47 

(c+2)-vector of parameters.  48 

 49 
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With a heterogeneous error variance assumption, we set up the generalized estimating equation 50 

as 51 

 ]_`=� a ]^� = 0, (7) 

where W is an m by m diagonal working covariance matrix with  345 element b� that is directly 52 

taken from LDSC [1]. In particular, b� = �
�cDd�efgRhiDjk lR, where m� = ∑Ω�. is the usual LD score 53 

for 345 SNP and m�� = Ω>. 	�.� is the LD score for jth SNP in the cth annotation category, n� is the 54 

heritability equaling α,. 55 

 56 

The above GEE equation leads to an iterative reweighted least squares method for estimating the 57 

parameters. After convergence, we obtain the estimates of ^  58 

 p̂qe�� = �]_`qe��]�r]_`qe��=�. (8) 

We use the robust sandwich estimator to obtain the covariance matrix Cov�p̂� of  p̂ . To do so, 59 

we recognize the covariance between two marginal =� statistics as  60 

 Cov�=u�, =��� � 2
\� JKwF.
F.


�xF.�F.��xy ?
2
\� JKwF.
F.


�0F.�F.�����y	 
(9) 

 	� �
E
�AB.P
√E F.
���1'∗��{ �	���2�F.� B.D

A�
√E , 

where the approximation is based on [2]. Therefore, we have 61 

 Cov=�� = 21|�{�1'∗��{�
\ � �

{����
\ �6} � 21|\T1'∗�T � T����1|, (10) 

 Cov�Θp� = 	 ]�`]�r]�`Covχ��`]]�`]�r. (11) 

where 1| is an m by m diagonal matrix with jth element �=��.  62 

 63 

With p̂  and Cov�p̂�, we can extract the corresponding parts for the annotation coefficients from 64 

equations 8 and 11, and construct a Wald statistics as 65 

 n��c� = '9����'9�r�+�. (12) 

 66 

Note that the LDSC paper used heritability enrichment for testing annotations but used z score of 67 

the coefficient directly for cell type-specific analyses. Therefore, above, we have followed the 68 
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LDSC and did not use heritability enrichment for quantifying trait-tissue relevance. Using 69 

coefficients directly for trait-tissue relevance inference is preferred to using heritability 70 

enrichment as the former often provides more sensible results in practice. To illustrate this point, 71 

let’s consider a simple example where we have two functional annotations, each occupying an 72 

equal partition of the genome and each explaining 50% of heritability. In this case, there is no 73 

heritability enrichment for either annotation. However, if the two annotations from tissue A 74 

explain more heritability together than the two annotations from tissue B, while both occupying 75 

an equal proportion of the genome in the two tissues (i.e. similar standard errors for the 76 

annotation coefficients in the two tissues), then it seems natural to claim that tissue A is more 77 

relevant to the trait than tissue B. Therefore, we have followed LDSC to use Wald statistics on 78 

annotation coefficients directly in the present study for inferring trait-tissue relevance. 79 

 80 

The GEE estimation procedure described above requires individual-level genotype data for the 81 

computation of the LD matrix V and the correlation matrix R. When individual-level genotypes 82 

are not available, we can use a suitable reference panel for the computation of V and R. In the 83 

present study, we used 503 individuals of European ancestry from the 1000 genomes project [5] 84 

as the genotype reference panel. To further reduce computational cost and memory requirement, 85 

we followed [6] and used a banded matrix plus a low rank matrix to approximate V and R for 86 

each chromosome separately. In particular, we computed Vp  and �p  in the reference panel, 87 

extracted the banded parts (V� and ��) using a bandwidth of 1cM, and added a one-rank matrix 88 

( V�� ) with equal element 1/n to V�  to ensure that the off-diagonal elements in the 89 

approximated V matrix equal its expectation. 90 

 91 

Trait-Relevant Tissue Classification with EM 92 

Here, we present details for the expectation maximization (EM) algorithm that classifies tissues 93 

into two groups in terms of their trait-relevance. Specifically, we first compute the multivariate 94 

Wald statistics, n�  for every tissue J ∈ 1, ⋯ , ��. We then model these Wald statistics across 95 

tissues using a mixture of two non-central chi-squared distributions 96 

 n� ~ �=q,���� + 1 a ��=q,�*�� , (13) 

where, with proportion �, n� follows a chi-squared distribution with a large variance ��, while 97 

with proportion 1 a �, n� follows a chi-squared distribution with a small variance �,. Both chi-98 
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squared distributions share the same degrees of freedom �  that equals to the number of 99 

annotations used in the Wald statistics (i.e. c). However, the two distribution have different 100 

noncentrality parameters ��  and �,  with �� > �, . The chi-squared distribution with the small 101 

noncentrality parameter represents the empirical null distribution that contains tissues irrelevant 102 

to the trait. The small, nonzero, noncentrality parameter characterizes the fact that these 103 

irrelevant tissues tend to have Wald statistics larger than what would be expected under the 104 

theoretical null distribution (i.e. central chi-squared) simply due to annotation correlation across 105 

tissues. In contrast, the chi-squared distribution with the large non-central parameter represents 106 

the alternative model that contains tissues relevant to the trait. The large noncentrality parameter 107 

characterizes the fact that these relevant tissues tend to have Wald statistics larger than those 108 

from the irrelevant tissues. To complete the model specification, we specify a beta prior for �, 109 

where we set the first shape parameter �� to be the number of tissues and the second shape 110 

parameter �� to be nine times the first so that the prior expectation of � is 0.1 with the belief that 111 

only a fraction of tissues are related to the given trait.  112 

 113 

We use the EM algorithm to infer λ1, λ0 and π. To facilitate inference, we introduce a vector of 114 

latent variables ��  that equals 1 if n�  follows the alternative distribution and equals 0 if n� 115 

follows the null distribution. Our goal is thus to infer the posterior probability (PP) of each tissue 116 

that belongs to the first component, or ��� = 1�.  117 

 118 

In the EM algorithm, the expectation (E)-step is 119 

 ���� = ����Ln������, �N
�q��Ln������, �N + 1 a  �����Ln���,��, �N. (14) 

 120 

While the maximization (M)-step is 121 

 (��
(�e�), �,

(�e�), �(�e�)) 
(15) 

 = �K�%� (¡) 
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= �K�%�  ¢Σ¤� m��(�) + log��(ℎ4|��, �)����
(�)

+ �m��(1 − �) + log��(ℎ4|��, �)��(1 − ��
(�))¦ + (�� − 1) m��(�)

+ (�� − 1)m��(1 − �)§ 

 

= �K�%�  ¢ m��(�) ∗ LΣ��
(�) +  �� − 1N +  m��(1 − �) ∗ LΣL1 − ��

(�)N +  �� − 1N

+  Σ��
(�) log��(ℎ4|��, �)�+ Σ(1 − ��

(�)) log��(ℎ4|�,, �)�§ 

We iterate between the E-step and M-step until convergence; the convergence criterion was 122 

defined as the absolute difference between two consecutive values for the likelihood is smaller 123 

than 0.001.  124 

 125 

Additional Simulation Details and Results 126 

 127 

We present part of the results from the first set of simulations described in the Materials and 128 

Methods here to illustrate the benefits of using mixture models to post-process the Wald statistics 129 

in order to address correlations among annotations and reduce false positives. To do so, we 130 

consider six different approaches:  131 

(1) SMART_Wald. We analyzed two annotations jointly and computed a single multivariate 132 

Wald statistic for each tissue using our procedure. We used these Wald statistics to measure trait-133 

tissue relevance. 134 

(2) SMART_EM. We applied an EM algorithm and a mixture model on the multivariate Wald 135 

statistics computed in (1) to further classify tissues into two groups. We used the posterior 136 

probability of a tissue being trait-relevant to measure trait-tissue relevance. 137 

(3) Uni_Wald. We analyzed one annotation at a time and computed two univariate Wald statistics 138 

for each tissue using our procedure. We used these Wald statistics to measure trait-tissue 139 

relevance. 140 

(4) Uni_EM. On top of (3), we applied an EM algorithm to classify these Wald statistics into two 141 

groups. For each tissue and each annotation, we obtained the posterior probability of being a 142 

trait-relevant tissue to measure trait-tissue relevance. 143 

(5) UniMax_Wald. We analyzed one annotation at a time. For each tissue, we computed two 144 

univariate Wald statistic using our procedure and selected among them the larger statistic as a 145 
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measurement of trait-tissue relevance. 146 

(6) UniMax_EM. On top of (5), we applied an EM algorithm to classify these Wald statistics into 147 

two groups. For each tissue, we obtained the posterior probability of its being a trait-relevant 148 

tissue to measure trait-tissue relevance. 149 

 150 

We considered a range of realistic annotation coefficient combinations (i.e. +�, +��). For each 151 

combination, we performed 1,000 simulation replicates. For each method, we computed the 152 

power of various methods in detecting the trait-relevant tissue at a false discovery rate (FDR) of 153 

0.05, 0.1 or 0.2 (Figure S1). As mentioned in the Methods section, we recommend using an EM 154 

algorithm and a mixture model to post-process the Wald statistics in order to address correlations 155 

among annotations and reduce false positives. Indeed, using mixture modeling for post 156 

processing (i.e. SMART_EM, Uni_EM, and UniMax_EM) almost always results in better 157 

performance than using the raw Wald statistics alone (i.e. the corresponding SMART_Wald, 158 

Uni_Wald, and UniMax_Wald). We extract a subset of Figure S1 to be Figure 1A and present the 159 

results in the main text to compare a multivariate method (2) versus two univariate methods (4 160 

and 6). 161 

 162 

For simulation results presented in Supplementary Figure S3, we aim to explore the 163 

characteristics of annotations that can influence the power of SMART in identifying trait-164 

relevant tissues. To do so, we simulated annotations that have various genome-occupancy 165 

characteristics and that have various annotation effect sizes and signs. Specifically, we simulated 166 

two binary annotations for each of the ten tissues, and each annotation annotates a fixed 167 

percentage of total SNPs to have value one and annotates the rest of SNPs to have value zero. We 168 

denote this fixed percentage as genome coverage, which varies from 4%, 8% to 12%. We set the 169 

overlap proportion among annotations in the trait-relevant tissue and trait-irrelevant tissues so 170 

that we can induce a correlation among annotations across tissues to be 0.5, a value close to that 171 

estimated in the real data. With these synthetic annotations, we then used 10,000 individuals and 172 

10,000 SNPs on chromosome one from the GERA study and simulated phenotypes, in a similar 173 

fashion as those described in the first set of simulations in Materials and Methods. We 174 

considered three approaches SMART, UniMax and UniMax_LDSC as described in the main text. 175 

We considered three simulating settings where each setting examines one characteristic of the 176 
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annotations:  177 

(1) We fixed the genome-coverage of the annotations to be 4% while varied the annotation 178 

coefficients for the two annotations in the trait-relevant tissue to be (0.01, 0.01), (0.05, 0.05) or 179 

(0.1, 0.1);  180 

(2) We fixed the genome-coverage of the annotations to be 4% while varied the annotation 181 

coefficients for the two annotations in the trait-relevant tissue to be (0.01, -0.01), (0.05, -0.05) or 182 

(0.1, -0.1);  183 

(3) We fixed the annotation coefficients for the two annotations in the trait-relevant tissue to be 184 

(0.1, 0.1) while changed the genome-coverage of the annotations to be 4%, 8% or 12%;  185 

In each simulation setting, we performed 1,000 simulation replicates, combined results across 186 

replicates, and computed the area under the curve (AUC) to compare the performance of 187 

different methods.  188 

 189 

For simulation results presented in Supplementary Figure S4, we used 10,000 individuals and 190 

10,000 SNPs from the GERA study and simulated phenotypes in a similar fashion as the second 191 

set of the simulations described in Materials and Methods. Briefly, we divided SNPs into 100 192 

blocks with 100 SNPs in each block. We then simulated two binary annotations for each of the 193 

ten tissues, where each of the two annotations in the causal blocks of the trait-relevant tissue 194 

labels a random set of 40% SNPs to have value one and the rest SNPs to have value zero. For 195 

trait-irrelevant tissues, a same number of SNPs were annotated randomly to have annotation 196 

value of one. For the trait-relevant tissue, only SNPs inside the causal blocks may have 197 

annotation value of one, so the fold of the enrichment (fe) for the annotations is proportional to 198 

the per causal block PVE, where fe = ª«¬ª®¯°±²±³�
´µ¶´·¸¹jº»¼ºi� =

½jº»¼ºi¾i¿jÀÁÂÃÄÅÆÇº»¼ºi
g¼PkR

½¾i¿jÀ½jº»¼ºi¾i¿jÀ
= ¹ÈÉÄÅÆÇº»¼ºiÊ¼PkR /¸¾i¿jÀ . We 199 

then performed weighted SKAT analysis using weights inferred by SMART_EM, UniMax_EM 200 

and UniMax_LDSC were applied. For UniMax_LDSC, 75 baseline annotations were used to 201 

address the correlation among annotations, and when computed the SNP specific variance as 202 

weights, the baseline annotations were not included: 203 

(1) We fixed the annotation coefficients to be (1, 1) and varied the number of causal blocks to be 204 

5, 10, 20 or 50; 205 

(2) We fixed the number of causal blocks to be 10 and varied the annotation coefficients to be 206 
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(0.01, 0.01), (0.3, 0.3), (0.6, 0.6) or (1, 1); 207 

(3) We fixed the per-block PVE to be 0.1, and changed the number of causal blocks and 208 

annotation coefficients. 209 

For each simulation scenario, 100 simulation replicates were performed.   210 
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